DE L'ISLE

LES EFFETS DE LA PARALLAXE

SUR LES PASSAGES DE VÉNUS
DE L'ISLE

LES EFFETS DE LA PARALLAXE

SUR LES PASSAGES DE VÉNUS
EXPLICATION
D'UNE FIGURE
PAR LAQUELLE ON TROUVE, SANS AUCUN CALCUL,
TOUS LES EFFETS DE LA PARALLAXE,
SUR LES PASSAGES
DE VENUS,
DANS TOUS LES PAYS DE LA TERRE.

Par M. DE L'ISLE, Doyen des Professeurs Royaux,
& de l'Académie Royale des Sciences, Membre des Académies
de Londres, de Berlin, de Stockholm, de Petersbourg,
de Boulogne, &c.
Les Nombres cités entre deux parenthèses, renvoient aux articles de l'Astronomie de M. de la Lande, où l'on trouvera les Démonstrations relatives à cette Figure, & les Méthodes auxquelles elle peut s'appliquer.
EXPLICATION D'UNE FIGURE,
par laquelle on trouve, sans aucun calcul, tous les
effets de la Parallaxe sur les passages de Vénus,
dans tous les pays de la terre.

Les différentes fortes d'observations que l'on a faites
dans le passage de Vénus sur le soleil en 1761, & que l'on
fera dans celui de 1769, sont toutes affectées des parallaxes
en différentes manières; le calcul de ces parallaxes est
une tâche si lourde par les méthodes ordinaires; mais
il devient de la plus grande facilité par le moyen de l'opéra-
tion graphique dont nous allons donner l'explication.

Je décris une grande ellipse RVGP, dont le petit
axe est au grand, comme le sinus total est au sinus de la dé-
clinaison du soleil qui est de 22° 42', ou à peu-près, dans
les passages de Vénus sur le soleil qui arrivent au mois de
Juin. Je divise cette ellipse en temps, de deux en deux mi-
nutes, pour avoir à chaque instant la situation de Paris sur
son parallèle.

Si P est le lieu de Paris sur son parallèle le 6 Juin à
8° 15' du matin, & qu'on tire au centre de la projection
une ligne PC, elle représentera la parallaxe de hauteur;
si l'on porte la longueur de cette ligne sur l'échelle de 49°
de latitude près de laquelle est marqué Paris, on verra
qu'elle est de 19". Ainsi la parallaxe de hauteur de Vénus
au soleil à 8° 15' du matin étoit de 19" à Paris; en suppo-
sant 26" pour la différence des parallaxes, comme dans l'é-
chelle de la Figure.

Pour trouver la parallaxe d'ascension droite on abaïs-
sera une perpendiculaire du point P où est situé Paris, sur le
parallèle à l'équateur, qui passe par le centre C de la pro-
jection; la ligne compris depuis le centre de la projection
jusqu'à cette perpendiculaire étant portée sur l'échelle, se
trouve de 14° 2. C'est la parallaxe d'ascension droite mesu-
lée sur un arc de grand cercle passant par le soleil (1614),
telle par conséquent qu'il faut l'avoir pour réduire les obser-
vations faites au micromètre (1675).
La parallaxe de déclinaison n'est autre chose que la perpendiculaire elle-même tirée du point P sur le parallèle à l'équateur, dans cet exemple elle se trouve de $14''\; 3$. C'est la quantité qu'il faut ôter de la différence apparente de déclinaison entre Vénus & le soleil, observée à $8\; 15'$ à Paris, déjà corrigée par la réfraction, pour avoir cette vraie différence de déclinaison.

On trouvera de la même manière la parallaxe de longitude & de latitude au moyen de la ligne marquée parallèle à l'écliptique qui fait avec la parallèle à l'orbite de Vénus, un angle égal à l'inclinaison apparente de l'écliptique sur la terre en 1761 de $20\; 3'$. C'est sur ce diamètre qui représente l'écliptique ou son parallèle, qu'on abaissera du point P une perpendiculaire, qu'on trouvera dans l'exemple proposé de $12''\; 6$; ce sera la parallaxe de latitude. La distance entre cette perpendiculaire & le centre C de la projection mesurée le long du parallèle à l'écliptique, sera la parallaxe de longitude; elle se trouve de $12''\; 6$. Je ne vois pas qu'on ait besoin de ces deux sortes de parallaxes dans la réduction & dans le calcul des observations; mais j'ai voulu les expliquer pour qu'il ne manquât rien à l'usage & à l'intelligence de la Figure que je propose.

La parallaxe de distance est aussi essentielle que les autres parallaxes, puisque les meilleures observations que l'on ait faites du passage de Vénus, sont celles où l'on a employé des héliomètres pour observer la distance de Vénus au bord du soleil (1669), & ces observations furent difficiles à réduire sans le secours de l'opération graphique dont il s'agit. Pour trouver la parallaxe de distance, nous serons obligés de tirer par le centre de l'ellipse une ligne EM parallèle à l'orbite, & une autre ligne MN perpendiculaire à l'orbite. Ayant pris EM pour représenter la plus courte distance des centres, qui en 1761 étoit de $9'\; 30''$, on prendra sur MN la valeur de $4'$ par heure; & marquant au point M le temps observé du milieu du passage, c'étoit $5\; 30'\; 1761$, on diviserà MN en heures & minutes; le point N, par exemple, répondra à $8\; 15'$; alors on tirera une ligne occulte EN, & par le centre C de la projection
une parallèle CH à la ligne EN; la perpendiculaire PH abaissée du point P sur cette ligne, PH sera la parallaxe de distance; si dans l'exemple précédent on porte PH sur l'échelle qui convient à la latitude de Paris, on la trouvera de 3" 7 pour 8 h 1/4 du matin. Cette quantité doit se retrancher de la distance apparente de Vénus au centre du soleil, parce que le point H est au midi du point P, aussi bien que Vénus.

La ligne MN doit être tirée plus loin du centre E de l'ellipse, & l'on emlloie cette figure pour le passage de fer à environ 10° 7"; on pourra prendre EO au lieu de EM, & par ce moyen l'on conferra les divisions de la ligne NM pour l'entrée, & on les portera au-dessous de la ligne EO pour la sortie de Vénus.

Je suppose qu'à 7 h 14' du soir commencement pour Paris, l'on veuille avoir la parallaxe de distance, on tirera une ligne EN vers le point qui répond à 3 h 18' de distance au milieu du passage; du centre C de la projection on tirera une perpendiculaire sur cette ligne NE prolongée au-dessous du point E; alors du point R qui est à 7 h 14' du soir ou à la gauche de l'ellipse, l'on tirera une perpendiculaire sur cette ligne; la distance du centre C au point où cette perpendiculaire tombera, fera la parallaxe de distance qui se trouvera de 26" sur l'échelle de Paris.

La sortie à Pétérbourg arrivera à 3 h 24' du matin, & 3 h 12' après le milieu du passage. Pour trouver la parallaxe de sortie à ce moment-là, je tire une perpendiculaire à EMO au-dessus du point O, & ayant tiré du centre E de l'ellipse une ligne au point qui répond à 3 h 12', je tire par le point marqué 60°, en K, qui est le centre de la projection pour Pétérbourg, une parallèle à cette ligne-là; du point G où est Pétérbourg sur son parallèle à 3 h 24' du matin j'abaissé une perpendiculaire sur la dernière parallèle, & c'est la parallaxe de distance; en la portant sur l'échelle de 60°, je trouve 10° 3', qui est la parallaxe de distance, en supposant que la parallaxe horizontale soit de 26". On s'est dispensé de tirer ces différentes lignes dans la figure, pour
6 Figure pour trouver les effets de la Parallaxe.

diminuer la confusion ; mais les Astronomes qui exécuteront les opérations indiquées dans les articles précédens, n’y trouveront aucun embarras.

Le centre C de la projection, est marqué pour Paris ; mais il doit changer si l’on calcule des observations faites sous d’autres latitudes (1615) ; on voit sur la ligne ECK les points qui répondent à différentes latitudes, c’est-à-dire, les centres de la projection qu’il faut substituer au point C, & qui sont placés suivant les nombres de la Table qu’on trouvera ci-après, pag. 8. c’est-à-dire, toutes au-dessus ou centre C de l’ellipse font pour les pays situés au midi de l’équateur à des latitudes australes, & quoiqu’ils ne soient marqués que jusqu’à 30°, il est aisé d’étendre les divisions en transportant en haut sur un papier qu’on y ajoutera, les divisions qui font au-dessous du centre de l’ellipse.

Quand on aura trouvé une parallaxe quelconque pour une latitude différente de celle de Paris, on portera cette ouverture de compas dans l’échelle générale, sur celle des lignes verticales qui fera marquée de la latitude dont il s’agit ; & l’on y verra sa valeur en secondes & dixièmes de secondes, parce que la projection ne donne les parallaxes qu’en supposant le rayon de la projection égal à la parallaxe horizontale.

Le racornissement du papier est un obstacle à l’exacité des figures imprimées ; Hévelius s’en plaignait à l’occasion de ses phases de la lune, (Selenog. p. 214) le papier que l’on mouille pour l'impression, se dilate & s’étend, il se comprime plus ou moins suivant sa qualité & son épaisseur ; il se retire ensuite inégalement lorsqu’on le fait sécher, & la proportion n’est plus la même entre sa longueur & sa largeur ; il en avertissait le Lecteur pour qu’on ne l’accusât pas d’avoir mal délimité la situation des taches de la lune, & d’avoir fait ovales des figures qui devaient être circulaires.

Dans une des épreuves de la grande ellipse, que je donne ici, j’ai observé que les extrémités du grand axe de l’ellipse étoient plus près du centre de l’ellipse sur le pa-
Figure pour trouver les effets de la Parallaxe.

pier que sur le cuivre, de 1 ligne ¾ d’un côté, & 2 lignes ½ de l’autre, les sommets du petit axe étoient rapprochés du centre, l’un de ¼, l’autre de ½ de ligne; le centre de la projection pour Paris étoit rapproché d’une ligne du centre de l’ellipse; ainsi le papier s’étoit rétréci dans toutes ses parties, mais beaucoup plus dans sa longueur, qui est la direction de l’enverjure de la forme, parce qu’il a beaucoup moins de densité dans le sens des fils de la verjure, que dans le sens des pontufaux, où les fils étant serrés l’un contre l’autre, ont donné à la pâte plus de fermeté & de consistance; (V. l’Art de faire le Papier, par M. de la Lande, 1760); on pourroit croire que le rouleau de la presse contribue à l’extension du papier, mais l’expérience fait voir que les estampes ne laissent pas de se rétrécir même dans le sens où la presse aurait dû les étendre.

Pour y remédier dans les Cartes géographiques, mon Frere le Géographe avoit eu l’attention d’alterer sur ses cuivres les dimensions des Cartes, de rendre les cercles elliptiques, de la quantité dont le papier avoit coutume de se rétrécir, plus en long qu’en large.

En faisant graver la figure que l’on voit ici, j’ai imaginé une autre précaution qui n’est pas moins bonne pour mettre chacun à portée de remédier à l’irrégularité de la figure imprimée. On voit tout autour de la Figure un rectangle $AABB$, dont la longueur AA ou BB, a été faite exactement de 23 pouces sur le cuivre, & la hauteur AB de 17 pouces. Il arrivera communément par le tirage que la largeur se réduira à 22 pouces 8 lignes, & la hauteur à 16 pouces 10 lignes; mais comme l’on humecte nécessairement la figure en la collant sur un carton, il sera aisé de l’étendre de manière qu’elle remplisse exactement un rectangle fait sur le carton, dont un côté soit à l’autre comme 17 est à 23; on laissera sécher dans cet état, & elle conservera ses dimensions proportionnelles, parce que le carton s’opposera suffisamment à la contraction du papier.

Il ne me reste plus qu’à donner ici la Table qui a servi à diviser la ligne $OECK$ pour différentes latitudes, (1444, 1615.)
Figure pour trouver les effets de la Parallaxe.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1000</td>
<td>24</td>
<td>411</td>
<td>1095</td>
<td>48</td>
<td>1025</td>
<td>1494</td>
</tr>
<tr>
<td>2</td>
<td>32</td>
<td>1001</td>
<td>26</td>
<td>450</td>
<td>1112</td>
<td>50</td>
<td>1099</td>
<td>1556</td>
</tr>
<tr>
<td>4</td>
<td>65</td>
<td>1002</td>
<td>28</td>
<td>491</td>
<td>1132</td>
<td>52</td>
<td>1181</td>
<td>1624</td>
</tr>
<tr>
<td>6</td>
<td>97</td>
<td>1006</td>
<td>30</td>
<td>533</td>
<td>1155</td>
<td>54</td>
<td>1270</td>
<td>1701</td>
</tr>
<tr>
<td>8</td>
<td>130</td>
<td>1010</td>
<td>32</td>
<td>577</td>
<td>1179</td>
<td>56</td>
<td>1368</td>
<td>1788</td>
</tr>
<tr>
<td>10</td>
<td>163</td>
<td>1015</td>
<td>34</td>
<td>622</td>
<td>1206</td>
<td>58</td>
<td>1476</td>
<td>1887</td>
</tr>
<tr>
<td>12</td>
<td>196</td>
<td>1022</td>
<td>36</td>
<td>670</td>
<td>1236</td>
<td>60</td>
<td>1598</td>
<td>2000</td>
</tr>
<tr>
<td>14</td>
<td>239</td>
<td>1031</td>
<td>38</td>
<td>721</td>
<td>1269</td>
<td>62</td>
<td>1735</td>
<td>2130</td>
</tr>
<tr>
<td>16</td>
<td>265</td>
<td>1040</td>
<td>40</td>
<td>774</td>
<td>1305</td>
<td>64</td>
<td>1892</td>
<td>2281</td>
</tr>
<tr>
<td>18</td>
<td>300</td>
<td>1051</td>
<td>42</td>
<td>831</td>
<td>1340</td>
<td>66</td>
<td>2072</td>
<td>2459</td>
</tr>
<tr>
<td>20</td>
<td>336</td>
<td>1064</td>
<td>44</td>
<td>891</td>
<td>1380</td>
<td>68</td>
<td>2283</td>
<td>2669</td>
</tr>
<tr>
<td>22</td>
<td>373</td>
<td>1079</td>
<td>46</td>
<td>955</td>
<td>1440</td>
<td>70</td>
<td>2535</td>
<td>2924</td>
</tr>
<tr>
<td>24</td>
<td>411</td>
<td>1095</td>
<td>48</td>
<td>1025</td>
<td>1494</td>
<td>72</td>
<td>2839</td>
<td>3236</td>
</tr>
</tbody>
</table>

Dans le cas où la déclinaison du soleil sera différente, on se servira toujours de la deuxième colonne qui contient le rayon de projection pour différents pays; mais pour avoir la distance des centres il faudra multiplier les nombres de la première colonne par le cosinus de la déclinaison donnée, divisé par le cosinus de 22° 42', qui est la déclinaison employée dans la Table précédente (1444.).

L'ellipse de cette Figure a été décrite assez en grand pour qu'on puisse y faire toutes les opérations précédentes dans les passages de Vénus, en se servant de l'échelle qui est à côté de l'ellipse; cette échelle suppose la différence des parallaxes de 26°, parce que cette Figure a été gravée dans un temps où l'on croyait la parallaxe du soleil un peu plus grande qu'elle ne nous paroit actuellement.

FIN.